Copied to
clipboard

G = C6210Dic3order 432 = 24·33

9th semidirect product of C62 and Dic3 acting via Dic3/C2=S3

non-abelian, soluble, monomial

Aliases: C6210Dic3, C3⋊(C6.7S4), A4⋊(C3⋊Dic3), (C3×C6).24S4, C6.11(C3⋊S4), (C6×A4).10S3, (C32×A4)⋊5C4, (C3×A4)⋊4Dic3, C325(A4⋊C4), C22⋊(C335C4), (C2×C62).19S3, C23.(C33⋊C2), C2.1(C324S4), (A4×C3×C6).3C2, (C2×A4).(C3⋊S3), (C2×C6)⋊2(C3⋊Dic3), (C22×C6).8(C3⋊S3), SmallGroup(432,621)

Series: Derived Chief Lower central Upper central

C1C22C32×A4 — C6210Dic3
C1C22C2×C6C62C32×A4A4×C3×C6 — C6210Dic3
C32×A4 — C6210Dic3
C1C2

Generators and relations for C6210Dic3
 G = < a,b,c,d | a6=b6=c6=1, d2=c3, ab=ba, cac-1=ab3, dad-1=a2b3, cbc-1=a3b4, dbd-1=a3b2, dcd-1=c-1 >

Subgroups: 1368 in 210 conjugacy classes, 69 normal (11 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, C6, C6, C2×C4, C23, C32, C32, Dic3, A4, C2×C6, C2×C6, C22⋊C4, C3×C6, C3×C6, C2×Dic3, C2×A4, C22×C6, C33, C3⋊Dic3, C3×A4, C62, C62, C6.D4, A4⋊C4, C32×C6, C2×C3⋊Dic3, C6×A4, C2×C62, C335C4, C32×A4, C625C4, C6.7S4, A4×C3×C6, C6210Dic3
Quotients: C1, C2, C4, S3, Dic3, C3⋊S3, S4, C3⋊Dic3, A4⋊C4, C33⋊C2, C3⋊S4, C335C4, C6.7S4, C324S4, C6210Dic3

Smallest permutation representation of C6210Dic3
On 108 points
Generators in S108
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)
(1 13 7 11 18 4)(2 14 8 12 16 5)(3 15 9 10 17 6)(19 25 24 29 36 31)(20 26 22 30 34 32)(21 27 23 28 35 33)(37 96 71 40 93 68)(38 91 72 41 94 69)(39 92 67 42 95 70)(43 90 51 46 87 54)(44 85 52 47 88 49)(45 86 53 48 89 50)(55 97 108)(56 98 103)(57 99 104)(58 100 105)(59 101 106)(60 102 107)(61 78 82)(62 73 83)(63 74 84)(64 75 79)(65 76 80)(66 77 81)
(1 107 95 11 104 92)(2 105 93 12 108 96)(3 103 91 10 106 94)(4 99 42 7 102 39)(5 97 40 8 100 37)(6 101 38 9 98 41)(13 57 70 18 60 67)(14 55 68 16 58 71)(15 59 72 17 56 69)(19 79 43 29 82 46)(20 83 47 30 80 44)(21 81 45 28 84 48)(22 73 49 32 76 52)(23 77 53 33 74 50)(24 75 51 31 78 54)(25 61 90 36 64 87)(26 65 88 34 62 85)(27 63 86 35 66 89)
(1 80 11 83)(2 82 12 79)(3 84 10 81)(4 62 7 65)(5 64 8 61)(6 66 9 63)(13 73 18 76)(14 75 16 78)(15 77 17 74)(19 105 29 108)(20 107 30 104)(21 103 28 106)(22 60 32 57)(23 56 33 59)(24 58 31 55)(25 97 36 100)(26 99 34 102)(27 101 35 98)(37 87 40 90)(38 86 41 89)(39 85 42 88)(43 96 46 93)(44 95 47 92)(45 94 48 91)(49 70 52 67)(50 69 53 72)(51 68 54 71)

G:=sub<Sym(108)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108), (1,13,7,11,18,4)(2,14,8,12,16,5)(3,15,9,10,17,6)(19,25,24,29,36,31)(20,26,22,30,34,32)(21,27,23,28,35,33)(37,96,71,40,93,68)(38,91,72,41,94,69)(39,92,67,42,95,70)(43,90,51,46,87,54)(44,85,52,47,88,49)(45,86,53,48,89,50)(55,97,108)(56,98,103)(57,99,104)(58,100,105)(59,101,106)(60,102,107)(61,78,82)(62,73,83)(63,74,84)(64,75,79)(65,76,80)(66,77,81), (1,107,95,11,104,92)(2,105,93,12,108,96)(3,103,91,10,106,94)(4,99,42,7,102,39)(5,97,40,8,100,37)(6,101,38,9,98,41)(13,57,70,18,60,67)(14,55,68,16,58,71)(15,59,72,17,56,69)(19,79,43,29,82,46)(20,83,47,30,80,44)(21,81,45,28,84,48)(22,73,49,32,76,52)(23,77,53,33,74,50)(24,75,51,31,78,54)(25,61,90,36,64,87)(26,65,88,34,62,85)(27,63,86,35,66,89), (1,80,11,83)(2,82,12,79)(3,84,10,81)(4,62,7,65)(5,64,8,61)(6,66,9,63)(13,73,18,76)(14,75,16,78)(15,77,17,74)(19,105,29,108)(20,107,30,104)(21,103,28,106)(22,60,32,57)(23,56,33,59)(24,58,31,55)(25,97,36,100)(26,99,34,102)(27,101,35,98)(37,87,40,90)(38,86,41,89)(39,85,42,88)(43,96,46,93)(44,95,47,92)(45,94,48,91)(49,70,52,67)(50,69,53,72)(51,68,54,71)>;

G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108), (1,13,7,11,18,4)(2,14,8,12,16,5)(3,15,9,10,17,6)(19,25,24,29,36,31)(20,26,22,30,34,32)(21,27,23,28,35,33)(37,96,71,40,93,68)(38,91,72,41,94,69)(39,92,67,42,95,70)(43,90,51,46,87,54)(44,85,52,47,88,49)(45,86,53,48,89,50)(55,97,108)(56,98,103)(57,99,104)(58,100,105)(59,101,106)(60,102,107)(61,78,82)(62,73,83)(63,74,84)(64,75,79)(65,76,80)(66,77,81), (1,107,95,11,104,92)(2,105,93,12,108,96)(3,103,91,10,106,94)(4,99,42,7,102,39)(5,97,40,8,100,37)(6,101,38,9,98,41)(13,57,70,18,60,67)(14,55,68,16,58,71)(15,59,72,17,56,69)(19,79,43,29,82,46)(20,83,47,30,80,44)(21,81,45,28,84,48)(22,73,49,32,76,52)(23,77,53,33,74,50)(24,75,51,31,78,54)(25,61,90,36,64,87)(26,65,88,34,62,85)(27,63,86,35,66,89), (1,80,11,83)(2,82,12,79)(3,84,10,81)(4,62,7,65)(5,64,8,61)(6,66,9,63)(13,73,18,76)(14,75,16,78)(15,77,17,74)(19,105,29,108)(20,107,30,104)(21,103,28,106)(22,60,32,57)(23,56,33,59)(24,58,31,55)(25,97,36,100)(26,99,34,102)(27,101,35,98)(37,87,40,90)(38,86,41,89)(39,85,42,88)(43,96,46,93)(44,95,47,92)(45,94,48,91)(49,70,52,67)(50,69,53,72)(51,68,54,71) );

G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108)], [(1,13,7,11,18,4),(2,14,8,12,16,5),(3,15,9,10,17,6),(19,25,24,29,36,31),(20,26,22,30,34,32),(21,27,23,28,35,33),(37,96,71,40,93,68),(38,91,72,41,94,69),(39,92,67,42,95,70),(43,90,51,46,87,54),(44,85,52,47,88,49),(45,86,53,48,89,50),(55,97,108),(56,98,103),(57,99,104),(58,100,105),(59,101,106),(60,102,107),(61,78,82),(62,73,83),(63,74,84),(64,75,79),(65,76,80),(66,77,81)], [(1,107,95,11,104,92),(2,105,93,12,108,96),(3,103,91,10,106,94),(4,99,42,7,102,39),(5,97,40,8,100,37),(6,101,38,9,98,41),(13,57,70,18,60,67),(14,55,68,16,58,71),(15,59,72,17,56,69),(19,79,43,29,82,46),(20,83,47,30,80,44),(21,81,45,28,84,48),(22,73,49,32,76,52),(23,77,53,33,74,50),(24,75,51,31,78,54),(25,61,90,36,64,87),(26,65,88,34,62,85),(27,63,86,35,66,89)], [(1,80,11,83),(2,82,12,79),(3,84,10,81),(4,62,7,65),(5,64,8,61),(6,66,9,63),(13,73,18,76),(14,75,16,78),(15,77,17,74),(19,105,29,108),(20,107,30,104),(21,103,28,106),(22,60,32,57),(23,56,33,59),(24,58,31,55),(25,97,36,100),(26,99,34,102),(27,101,35,98),(37,87,40,90),(38,86,41,89),(39,85,42,88),(43,96,46,93),(44,95,47,92),(45,94,48,91),(49,70,52,67),(50,69,53,72),(51,68,54,71)]])

42 conjugacy classes

class 1 2A2B2C3A3B3C3D3E···3M4A4B4C4D6A6B6C6D6E···6L6M···6U
order122233333···3444466666···66···6
size113322228···85454545422226···68···8

42 irreducible representations

dim11122223366
type++++--++-
imageC1C2C4S3S3Dic3Dic3S4A4⋊C4C3⋊S4C6.7S4
kernelC6210Dic3A4×C3×C6C32×A4C6×A4C2×C62C3×A4C62C3×C6C32C6C3
# reps1121211212244

Matrix representation of C6210Dic3 in GL7(𝔽13)

121200000
1000000
00911000
0003000
00001200
00000120
0000121
,
121200000
1000000
0010000
0001000
0000100
00000120
000012012
,
01200000
1100000
0042000
00010000
0000121111
00001200
0000881
,
11200000
4200000
0080000
00115000
0000121111
0000010
0000001

G:=sub<GL(7,GF(13))| [12,1,0,0,0,0,0,12,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,11,3,0,0,0,0,0,0,0,12,0,1,0,0,0,0,0,12,2,0,0,0,0,0,0,1],[12,1,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,12,0,0,0,0,0,12,0,0,0,0,0,0,0,12],[0,1,0,0,0,0,0,12,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,2,10,0,0,0,0,0,0,0,12,12,8,0,0,0,0,11,0,8,0,0,0,0,11,0,1],[11,4,0,0,0,0,0,2,2,0,0,0,0,0,0,0,8,11,0,0,0,0,0,0,5,0,0,0,0,0,0,0,12,0,0,0,0,0,0,11,1,0,0,0,0,0,11,0,1] >;

C6210Dic3 in GAP, Magma, Sage, TeX

C_6^2\rtimes_{10}{\rm Dic}_3
% in TeX

G:=Group("C6^2:10Dic3");
// GroupNames label

G:=SmallGroup(432,621);
// by ID

G=gap.SmallGroup(432,621);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-3,-2,2,14,170,675,2524,9077,2287,5298,3989]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=c^6=1,d^2=c^3,a*b=b*a,c*a*c^-1=a*b^3,d*a*d^-1=a^2*b^3,c*b*c^-1=a^3*b^4,d*b*d^-1=a^3*b^2,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽